• tesla_instytute_b3.jpg
  • tesla_instytute_b5.jpg
  • tesla_instytute_b1.jpg
  • banner_004.jpg
  • tesla_instytute_b7.jpg
  • banner_001.jpg
  • tesla_instytute_b2.jpg
  • tesla_instytute_b4.jpg
  • banner_002.jpg

AC-DC Rectifiers

 

 

The Full Wave Bridge Rectifier

Another type of circuit that produces the same output waveform as the full wave rectifier circuit above, is that of the Full Wave Bridge Rectifier. This type of single phase rectifier uses four individual rectifying diodes connected in a closed loop “bridge” configuration to produce the desired output. The main advantage of this bridge circuit is that it does not require a special centre tapped transformer, thereby reducing its size and cost. The single secondary winding is connected to one side of the diode bridge network and the load to the other side as shown below.

 

Rectifiers TESLA Institute The Diode Bridge Rectifier

 

The four diodes labelled D1 to D4 are arranged in “series pairs” with only two diodes conducting current during each half cycle. During the positive half cycle of the supply, diodes D1 and D2 conduct in series while diodes D3 and D4 are reverse biased and the current flows through the load as shown below.

 

Rectifiers TESLA Institute

The Positive Half-cycle

 

During the negative half cycle of the supply, diodes D3 and D4 conduct in series, but diodes D1 and D2 switch “OFF” as they are now reverse biased. The current flowing through the load is the same direction as before.

Rectifiers TESLA Institute 

The Negative Half-cycle

 

As the current flowing through the load is unidirectional, so the voltage developed across the load is also unidirectional the same as for the previous two diode full-wave rectifier, therefore the average DC voltage across the load is 0.637Vmax.

Rectifiers TESLA Institute

Typical Bridge Rectifier

 

However in reality, during each half cycle the current flows through two diodes instead of just one so the amplitude of the output voltage is two voltage drops (2 x 0.7 = 1.4V) less than the input VMAX amplitude. The ripple frequency is now twice the supply frequency (e.g. 100Hz for a 50Hz supply or 120Hz for a 60Hz supply.)

Although we can use four individual power diodes to make a full wave bridge rectifier, pre-made bridge rectifier components are available “off-the-shelf” in a range of different voltage and current sizes that can be soldered directly into a PCB circuit board or be connected by spade connectors.

The image to the right shows a typical single phase bridge rectifier with one corner cut off. This cut-off corner indicates that the terminal nearest to the corner is the positive or +ve output terminal or lead with the opposite (diagonal) lead being the negative or -ve output lead. The other two connecting leads are for the input alternating voltage from a transformer secondary winding.

 

Top